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1 Proofs

1.1 Proposition 1

Proof. Recall that for the model of interest there are only two covariates, x and z, and
a response y, each of which is a covariance-stationary AR(1) process. These time series
can then be represented individually as

yt = ζy + ρyyt−1 + ηt, where |ρy| < 1, (1)

xt = ζx + ρxxt−1 + ηt, where |ρx| < 1, (2)

zt = ζz + ρzzt−1 + ηt, where |ρz| < 1, (3)

with t indexing time. Assume that η iid∼ N (0, σ2). FollowingDavidson andMacKinnon
(2003) and Box-Steffensmeier et al. (2014), the unconditional mean and variance, and
unconditional autocovariance for any lag length `, can be written

E[yt] =
ζy

1− ρy
, V[yt] =

σ2

1− ρ2y
, C[yt, yt+`] = ρ`y

(
σ2

1− ρ2y

)
, (4)

E[xt] =
ζx

1− ρx
, V[xt] =

σ2

1− ρ2x
, C[xt, xt+`] = ρ`x

(
σ2

1− ρ2x

)
, (5)

E[zt] =
ζz

1− ρz
, V[zt] =

σ2

1− ρ2z
, C[zt, zt+`] = ρ`z

(
σ2

1− ρ2z

)
. (6)

Define F(µ, σ2) as generic distribution with mean µ, variance σ2, and autocovariance
γ(`) for lag `. Thus, we can define the variables as stochastic processes using the
Equations 4-6 as

y ∼ F(µy, σ
2
y), (7)

x ∼ F(µx, σ
2
x), (8)

z ∼ F(µz, σ
2
z). (9)

I now calculate the unconditional mean, variance, and autocovariance of xtzt in turn.
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Mean. The expectation is given by

E [xtzt] = C[xt, zt] + E[xt]E[zt]

= C[xt, zt] + µxµz. (10)

Variance. The variance is given by

V[xtzt] = (E[xt])
2V[zt] + (E[zt])2V[xt] + E

[
(xt − E[xt])

2 (zt − E[zt])2
]

+ 2E[xt]E
[
(xt − E[xt]) (zt − E[zt])2

]
+ 2E[zt]E

[
(xt − E[xt])

2 (zt − E[zt])
]

+ 2E[xt]E[zt]C[xt, zt]− (C[xt, zt])
2 ,

which reduces to

V[xtzt] = C[x2
t , z

2
t ] + 2µxC[xt, z

2
t ] + 2µzC[x2

t , zt]− (C[xt, zt])
2

+
(
σ2
x + 2µ2

x − 2µx

) (
σ2
z + 2µ2

z − 2µz

)
. (11)

Auto-covariance. Bohrnstedt and Goldberger (1969) build on results from Goodman
(1960), giving the general form of the covariance of two products of random variables:

C[xtzt,xt+`zt+`] =

E [xt]E [xt+`]C [zt, zt+`] + E [xt]E [zt+`]C [xt+`, zt]

+E [zt]E [xt+`]C [xt, zt+`] + E [zt]E [zt+`]C [xt, xt+`]

+E [(xt − E[xt]) (zt − E[zt]) (xt+` − E[xt+`]) (zt+` − E[zt+`])]

+E[xt]E [(zt − E[zt]) (xt+` − E[xt+`]) (zt+` − E[zt+`])]

+E[zt]E [(xt − E[xt]) (xt+` − E[xt+`]) (zt+` − E[zt+`])]

+E[xt+`]E [(xt − E[xt]) (zt − E[zt]) (zt+` − E[zt+`])]

+E[zt+`]E [(xt − E[xt]) (zt − E[zt]) (xt+` − E[xt+`])]

−C [xt, zt]C [xt+`, zt+`] . (12)
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This expression simplifies to

C[xtzt,xt+`zt+`] =

4µ2
xµ

2
z + µ2

xρ
`
zσ

2
z + µ2

zρ
`
xσ

2
x + ρ`xρ

`
zσ

2
xσ

2
z

+µx

(
C[xt, ztzt+`]− C[xt+`, ztzt+`]

)
+ µz

(
C[xtxt+`, zt]− C[xtxt+`, zt+`]

)
−µxµz

(
C[xt, zt] + C[xt+`, zt+`]

)
+ C[xtxt+`, ztzt+`] + C[xt, zt]C[xt+`, zt+`].

(13)

Checking for stationarity. Recall that the definition of weak (covariance) stationarity
is that, for a stochastic series, the unconditional mean and variance, and unconditional
autocovariance for some lag `, must exist and be independent of t (for t, ` ∈ Z).

The stochastic process xz satisfies these conditions only where the covariance terms
in Equations 10, 11, and 13 are not functions of time. Thus, xtzt will be stationary if and
only if C[x̂, ẑ] = C[x̃, z̃] ∀ x̂ and x̃ ∈ {xt, xt+`, xtxt+`}, ẑ and z̃ ∈ {zt, zt+`, ztzt+`},
where t, ` ∈ Z≥0, and x̂ (ẑ) and x̃ (z̃) differ only in t. �

1.2 Corollary 1

Proof. Assume x and z are stochastically independent. I calculate the the mean,
variance, and auto-covariance of xtzt in turn.

Mean. The mean is given by

E [xtzt] = E[xt]E[zt]

= µxµz. (14)

Variance. The variance is given by

V [xtzt] = (E[xt])
2V (zt) + (E[zt])2V (xt) + V (zt)V (xt)

= µ2
xσ

2
z + µ2

zσ
2
x + σ2

xσ
2
z . (15)
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Autocovariance. For independent x and z, all of the third moments in Equation
12 reduce to zero, and the fourth moment reduces to the product of each variable’s
autocovariance, such that

C[xtzt, xt+`zt+`] = E [xt]E [xt+`]C [zt, zt+`] + E [xt]E [zt+`]C [xt+`, zt]

+ E [zt]E [xt+`]C [xt, zt+`] + E [zt]E [zt+`]C [xt, xt+`]

+ ρ`xρ
`
zσ

2
xσ

2
z − C [xt, zt]C [xt+`, zt+`]

= µ2
xρ

`
zσ

2
z + µ2

zρ
`
xσ

2
x + ρ`xρ

`
zσ

2
xσ

2
z . (16)

Checking for stationarity. The unconditional mean is constant, all of the terms in the
unconditional variance are positive constants, and all of the terms in the autocovariance
are constant. Thus the stochastic process xz is stationary and can be described:

xz ∼ F
(
µxµz, µ

2
xσ

2
z + µ2

zσ
2
x + σ2

xσ
2
z

)
,

γxz (`) = µ2
xρ

`
zσ

2
z + µ2

zρ
`
xσ

2
x + ρ`xρ

`
zσ

2
xσ

2
z . �

1.3 Proposition 2

Proof. Recall that a cointegrating vector is a vector of coefficients such that the linear
combination ofmore than one stochastic series produces a stationary stochastic process,
where at least one element of the vector is non-zero. Assume y, x, and z are (potentially
non-stationary) AR(1) stochastic processes. Define the trivariate system with no
multiplicative interactions among covariates x and z as

yt − α0 − α1yt−1 − β0xt − β1xt−1 − β2zt − β3zt−1 = εt, (17)

where ε iid∼ N (0, σ2). Assume that there is at least one cointegrating vector for this
system; without loss of generality, define this cointegrating vector in the normalized
form β = (1,−α1,−β0,−β1,−β2,−β3).

Define the system that includes a multiplicative interaction between xt and zt as

yt − α0 − α1yt−1 − β0xt − β1xt−1 − β2zt − β3zt−1 − β4xtzt = εt. (18)
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Consider the candidate cointegrating vector

β′ = (1,−α1,−β0,−β1,−β2,−β3,−β4),

where β4 = 0. It is evident that this produces a stationary stochastic process ε, by
the assumption that β does: β4 makes the multiplicative interaction zero, and by
assumption, the remaining coefficients produce a linear combination of y, x, and
z such that ε is stationary. Further, the assumption that β is a cointegrating vector
implies that at least one term in β—and therefore β′—is non-zero. Thus β′ is a
cointegrating vector, and the system with a multiplicative interaction among covariates
is cointegrated. �
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2 Extension to an AR(p) process

Proof. The response y and covariates x and z can be defined as stationary AR(p)
processes:

yt = ζy + ρy,1yt−1 + ρy,2yt−2 + · · ·+ ρy,pyt−p + ηt (19)

xt = ζx + ρx,1xt−1 + ρx,2xt−2 + · · ·+ ρx,pxt−p + ηt (20)

zt = ζz + ρz,1zt−1 + ρz,2zt−2 + · · ·+ ρz,pzt−p + ηt. (21)

Allow L to denote the lag operator—when L multiplies any parameter with a time
subscript, this subscript is lagged one period—and define

φ(L) = 1− ρ1L− ρ2L
2 − · · · − ρpL

p. (22)

Stationarity requires that the roots of the polynomial equation φ(L) = 0 lie
outside the unit circle for y, x, and z. This allows us to rewrite the unconditional mean,
unconditional variance, and autocovariance conditional on ` as

E[yt] =
ζy

1−
∑p

i=1 ρy,i
, V[yt] =

σ2

1−
∑p

i=1 ρ
2
y,i

, C[yt, yt+`] =

p∑
r=1

ρy,rγy(`− r)

(23)

E[xt] =
ζx

1−
∑p

i=1 ρx,i
, V[xt] =

σ2

1−
∑p

i=1 ρ
2
x,i

, C[xt, xt+`] =

p∑
r=1

ρx,rγx(`− r)

(24)

E[zt] =
ζz

1−
∑p

i=1 ρz,i
, V[zt] =

σ2

1−
∑p

i=1 ρ
2
z,i

, C[zt, zt+`] =

p∑
r=1

ρz,rγz(`− r)

(25)

As above, define the mean, variance, and autocorrelation of y as µy, σ2
y , and γy(`),

respectively, and similarly for x and z. The same result as in the AR(1) case holds. �
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3 Quantities of interest in the ECM framework

Recall that the general model with a conditional relationship is given in ADL form
in Equations 2 and 3 (in the main text) in ADL and ECM form, respectively. All of
the quantities described in the text can be recovered from either specification; Table
1 provides the variable translations to move between models. These can be used to
rewrite the general equations for quantities of interest from the ECM, which I provide
here.

Period-specific effects: Equation 4 (main text) becomes

∂yt+j

∂xt
=



0 for j ∈ Z<0,

θ0 + θ4zt + (θ5 + θ6)∆zt for j = 0,

(γ1 + 1)j [θ0 + θ4zt + (θ5 + θ6)∆zt] +

(γ1 + 1)j−1 [θ1 − θ0 − θ4zt+1 − θ6∆zt+1 + θ7zt] for j ∈ Z>0.

(26)

Cumulative effects: Equation 5 (main text) yields

k∑
j=h

∂yt+j

∂xt

=
(θ0 + θ4zt + θ5∆zt + θ6∆zt)

(
[γ1 + 1]h − [γ1 + 1]k+1

)
−γ1

+

(θ1 − θ0 − θ4zt+1 − θ6∆zt+1 + θ7zt)
(
[γ1 + 1]h−1 − [γ1 + 1]k

)
−γ1

for h, k ∈ Z>0 such that h < k, and

k∑
j=h

∂yt+j

∂xt

=
(θ0 + θ4zt + θ5∆zt + θ6∆zt)

(
1− [γ1 + 1]k+1

)
−γ1

+

(θ1 − θ0 − θ4zt+1 − θ6∆zt+1 + θ7zt)
(
1− [γ1 + 1]k

)
−γ1
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Table 1: Variable transformations between the general ADL and ECM in
Equations 2 and 3 (main text)

ADL ECM

α0 = γ0 α0 = γ0
α1 = γ1 + 1 α1 − 1 = γ1
β0 = θ0 β0 = θ0
β1 = θ1 − θ0 β0 + β1 = θ1
β2 = θ2 β2 = θ2
β3 = θ3 − θ2 β2 + β3 = θ3
β4 = θ4 + θ5 + θ6 β4 − β6 = θ4
β5 = −(θ4 + θ6) β4 − β5 = θ5
β6 = −(θ5 + θ6) −(β4 + β5 + β6) = θ6
β7 = θ6 + θ7 β4 + β5 + β6 + β7 = θ7

for h = 0. Also note that the LRE is given by

∞∑
j=0

∂yt+j

∂xt

=
θ1 + θ7zt + (θ5 + θ6)∆zt − (θ4 + θ6)∆zt+1

−γ1
. (27)

Threshold effects: First define

a = θ0 + θ4zt + (θ5 + θ6)∆zt

b = θ1 − θ0 − θ4zt+1 − θ6∆zt+1 + θ7zt.

for ease of presentation. Also define an arbitrary threshold λ, and solve for k from the
cumulative effect where h = 0. This yields

k =


log

(
a+ b− (1− α1)λ

α1a+ b

)
logα1

 ,

where the ceiling function indicates rounding up since k is a discrete period in time.
Lag lengths are identically derived, where λ ≡ δΩ, δ ∈ [0, 1), and Ω is the LRE. As
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discussed in the text, both quantities are more easily found inductively than solved for.
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4 Quantities of interest

4.1 Period-specific effects

Recall that the general conditional model is given by

yt = α0 + α1yt−1 + β0xt + β1xt−1 + β2zt + β3zt−1

+ β4xtzt + β5xt−1zt + β6xtzt−1 + β7xt−1zt−1 + εt. (28)

Period-specific effects are defined as ∂yt+j

∂xt
∀ j ∈ Z. We first examine the case where

j = 0, which is just Equation 28. Differentiating with respect to xt yields

∂yt
∂xt

= β0 + β4zt + β6zt−1.

Moving to j = 1, the model becomes

yt+1 = α0 + α1yt + β0xt+1 + β1xt + β2zt+1 + β3zt

+ β4xt+1zt+1 + β5xtzt+1 + β6xt+1zt + β7xtzt + εt+1,

into which we can substitute the right side of Equation 28 for yt. This yields

yt+1 = α0 + α1 (α0 + α1yt−1 + β0xt + β1xt−1 + β2zt + β3

+ zt−1 + β4xtzt + β5xt−1zt + β6xtzt−1 + β7xt−1zt−1 + εt)

+ β0xt+1 + β1xt + β2zt+1 + β3zt

+ β4xt+1zt+1 + β5xtzt+1 + β6xt+1zt + β7xtzt + εt+1.

Differentiating yields

∂yt+1

∂xt

= α1 (β0 + β4zt + β6zt−1) + β1 + β5zt+1 + β7zt,

which is the period-specific effect for j = 1. Following the same process for j = 2 gives
∂yt+2

∂xt
= α2

1 (β0 + β4zt + β6zt−1) + α1 (β1 + β5zt+1 + β7zt). This pattern continues
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for all j ∈ Z>0, with each set of terms in parantheses multiplied by α1 to increasingly
higher powers. Finally, note that for any j < 0, no substitutions can be made such
that an xt term appears among the covariates, making each derivative zero. Thus,
for negative j, all period-specific effects are nil. This gives the general expression for
period-specific effects (Equation 4 in the main text).

4.2 Cumulative effects

Cumulative effects are sums of period-specific effects. Defined most generally as

k∑
j=h

∂yt+j

∂xt

≡ ∂yt+h

∂xt

+
∂yt+h+1

∂xt

+ · · ·+ ∂yt+k

∂xt

,

we can substitute such that

k∑
j=h

∂yt+j

∂xt

= αh
1 (β0 + β4zt + β6zt−1) + αh−1

1 (β1 + β5zt+1 + β7zt)

+ αh+1
1 (β0 + β4zt + β6zt−1) + αh

1 (β1 + β5zt+1 + β7zt)

...

+ αk
1 (β0 + β4zt + β6zt−1) + αk−1

1 (β1 + β5zt+1 + β7zt) .

Group terms and rewrite:

k∑
j=h

∂yt+j

∂xt

=
(
αh
1 + αh+1

1 + · · ·+ αk
1

)
(β0 + β4zt + β6zt−1)

+
(
αh−1
1 + αh

1 + · · ·+ αk−1
1

)
(β1 + β5zt+1 + β7zt) . (29)

These are two geometric sums which can be solved simultaneously. Multiply both
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through by α1 and then subtract the result from Equation 29, giving

(1− α1)
k∑

j=h

∂yt+j

∂xt

=
(
αh
1 − αk+1

1

)
(β0 + β4zt + β6zt−1)

+
(
αh−1
1 − αk

1

)
(β1 + β5zt+1 + β7zt) .

Dividing through by (1− α1) gives the expression for 0 < h < k (Equation 5 in the
main text). Note, however, that when h = 0, this expression raises β1 + β5zt+1 + β7zt

to a negative power. This is not correct, and the instantaneous effect does not include
any of these terms. Thus h = 0 presents a special case, for which repeating the same
approach to derivation with h = 0 yields the general expression in Equation 6 in the
main text.

4.3 Threshold effects

For ease of presentation, define

a = β0 + β4zt + β6zt−1

b = β1 + β5zt+1 + β7zt.

Also define an arbitrary threshold λ, and solve for k in Equation 6 (main text) where
h = 0. This yields

k =


log

(
a+ b− (1− α1)λ

α1a+ b

)
logα1

 ,

where the ceiling function indicates rounding up since k is a discrete period in time.
Lag lengths are identically derived, where λ ≡ δΩ, δ ∈ [0, 1), and Ω is the LRE. As
discussed in the text, both quantities are more easily found inductively than solved for.
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4.4 Estimating uncertainty with parametric bootstrapping

Building on King, Tomz, and Wittenberg (2000), we can describe the parametric
bootstrap for a maximum likelihood framework:

1. Estimate the model, e.g. Equation 28, from which we wish to draw inferences.

2. Store the point estimates (β̂) and variance-covariance matrix (C(β̂)).

3. Take M draws from the multivariate normal NMV

(
β̂,C(β̂)

)
and save the

output.

4. Define S scenarios of interest to study. For instance, we may hold all variables at
their central tendency but vary one along its interquartile range by S increments.
With dynamic models, these scenarios need to satisfy the constraint ∆yt =

yt − yt−1 (and similarly for x and z) to be empirically relevant.

5. For each s ∈ S and m ∈ M , calculate quantities of interest.

6. For each s ∈ S, take quantiles over the M draws, e.g. the .025th and .975th, to
approximate 95% confidence intervals.

This procedure yields statements of uncertainty for every quantity of interest for every
scenario s ∈ S. Example code for this procedure is provided in the replication archive.

16



5 Quantities of interest for a model with no interaction

The inferential framework developed for the paper is suitable for deriving quantities of
interest from any ADL or ECM. To illustrate, I provide quantities of interest for the
basic ADL(1,1;1) studied in De Boef and Keele (2008), given by:

yt = α0 + α1yt−1 + β0xt + β1xt−1 + εt. (30)

5.1 Period-specific effects

These are defined as ∂yt+j

∂xt
∀ j ∈ Z. Wefirst examine the casewhere j = 0. Differentiating

with respect to xt yields
∂yt
∂xt

= β0,

which scholars commonly refer to as the “short term effect” but I discuss as the
instantaneous effect in the main text.

Moving to j = 1, the model becomes

yt+1 = α0 + α1yt + β0xt+1 + β1xt + εt+1,

into which we can substitute the right side of Equation 30 for yt. This yields

yt+1 = α0 + α1 (α0 + α1yt−1 + β0xt + β1xt−1 + εt) + β0xt+1 + β1xt + εt+1.

Differentiating yields

∂yt+1

∂xt

= α1 (β0 + β4zt + β6zt−1) + β1 + β5zt+1 + β7zt,

which is the period-specific effect for j = 1. Following the same process for j = 2

gives ∂yt+2

∂xt
= α2

1 (β0) + α1 (β1). This pattern continues for all j ∈ Z>0, with each set
of terms in parantheses multiplied by α1 to increasingly higher powers. Finally, note
that for any j < 0, no substitutions can be made such that an xt term appears among
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the covariates, making each derivative zero. Thus, for negative j, all period-specific
effects are nil. This gives the following general expression:

∂yt+j

∂xt
=


0 for j ∈ Z<0,

β0 for j = 0,

αj
1 (β0) + αj−1

1 (β1) for j ∈ Z>0.

(31)

5.2 Cumulative effects

Cumulative effects are sums of period-specific effects. Defined most generally as

k∑
j=h

∂yt+j

∂xt

≡ ∂yt+h

∂xt

+
∂yt+h+1

∂xt

+ · · ·+ ∂yt+k

∂xt

,

we can substitute such that

k∑
j=h

∂yt+j

∂xt

= αh
1 (β0) + αh−1

1 (β1)

+ αh+1
1 (β0) + αh

1 (β1)

...

+ αk
1 (β0) + αk−1

1 (β1) .

Group terms and rewrite:

k∑
j=h

∂yt+j

∂xt

=
(
αh
1 + αh+1

1 + · · ·+ αk
1

)
(β0)

+
(
αh−1
1 + αh

1 + · · ·+ αk−1
1

)
(β1) . (32)

These are two geometric sums which can be solved simultaneously. Multiply both
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through by α1 and then subtract the result from Equation 32, giving

(1− α1)
k∑

j=h

∂yt+j

∂xt

=
(
αh
1 − αk+1

1

)
(β0) +

(
αh−1
1 − αk

1

)
(β1) .

Dividing through by (1− α1) gives the following general expression for 0 < h < k:

k∑
j=h

∂yt+j

∂xt
=

(β0)
(
αh
1 − αk+1

1

)
+ (β1)

(
αh−1
1 − αk

1

)
1− α1

. (33)

Again h = 0 presents a special case, given by

k∑
j=0

∂yt+j

∂xt
=

(β0)
(
1− αk+1

1

)
+ (β1)

(
1− αk

1

)
1− α1

. (34)

Finally, if we allow k → ∞, we get the total effect:

∞∑
j=0

∂yt+j

∂xt
=

β0 + β1

1− α1

. (35)

This quantity is clearly the widely-known LRE (or “LRM”) for an ADL(1,1;1).

5.3 Threshold effects

Define an arbitrary threshold λ, and solve for k in Equation 34. This yields

k =


log

(
β0 + β1 − (1− α1)λ

α1β0 + β1

)
logα1

 ,

where the ceiling function indicates rounding up since k is a discrete period in time.
Lag lengths are identically derived, where λ ≡ δΩ, δ ∈ [0, 1), and Ω is the LRE. As
discussed in the text, both quantities are more easily found inductively than solved for.
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6 Further Monte Carlo results

In this section I provide further Monte Carlo results. Each figure plots mean estimates
in the top panel and coverage rates in the bottom panel, analogous to Figure 1 for the
parameters of interest not discussed in the text. Like with the error-correction rate, I
find that the general model produces better estimates of all parameters than does a
model with an invalid restriction.
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Figure 1: Monte Carlo simulation results for β0. Triangles represent
estimates from the model without an interaction, squares are from a
restricted model, and circles are from the general model. Mean estimates are
plotted against the true values (dashed lines) in the top panel. The bottom
panel plots the proportion of 500 replicates under each condition for which
95% confidence intervals contain the true value.
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Figure 2: Monte Carlo simulation results for β1. Triangles represent
estimates from the model without an interaction, squares are from a
restricted model, and circles are from the general model. Mean estimates are
plotted against the true values (dashed lines) in the top panel. The bottom
panel plots the proportion of 500 replicates under each condition for which
95% confidence intervals contain the true value.
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Figure 3: Monte Carlo simulation results for β2. Triangles represent
estimates from the model without an interaction, squares are from a
restricted model, and circles are from the general model. Mean estimates are
plotted against the true values (dashed lines) in the top panel. The bottom
panel plots the proportion of 500 replicates under each condition for which
95% confidence intervals contain the true value.
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Figure 4: Monte Carlo simulation results for β3. Triangles represent
estimates from the model without an interaction, squares are from a
restricted model, and circles are from the general model. Mean estimates are
plotted against the true values (dashed lines) in the top panel. The bottom
panel plots the proportion of 500 replicates under each condition for which
95% confidence intervals contain the true value.
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Figure 5: Monte Carlo simulation results for β4. Squares represent estimates
from a restricted model and circles are from the general model. Mean
estimates are plotted against the true values (dashed lines) in the top panel.
The bottompanel plots the proportion of 500 replicates under each condition
for which 95% confidence intervals contain the true value.
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Figure 6: Monte Carlo simulation results for β5. Circles represent estimates
from the general model. Mean estimates are plotted against the true values
(dashed lines) in the top panel. The bottom panel plots the proportion of
500 replicates under each condition for which 95% confidence intervals
contain the true value.
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Figure 7: Monte Carlo simulation results for β6. Circles represent estimates
from the general model. Mean estimates are plotted against the true values
(dashed lines) in the top panel. The bottom panel plots the proportion of
500 replicates under each condition for which 95% confidence intervals
contain the true value.
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Figure 8: Monte Carlo simulation results for β7. Circles represent estimates
from the general model. Mean estimates are plotted against the true values
(dashed lines) in the top panel. The bottom panel plots the proportion of
500 replicates under each condition for which 95% confidence intervals
contain the true value.

28



7 Replication of Morgan and Kelly (2013)

How can states ensure that the poor benefit from growth? Many studies have uncovered
mechanisms through which governments directly redistribute wealth over both the
short and long run (e.g., Morley 2001), including such channels as explicit cash transfers
and investments in primary education. Yet very little research is devoted to how states
indirectly induce distributive outcomes by shaping market forces.

Morgan and Kelly (2013, “M & K”) investigate these “market conditioning” mech-
anisms. They note how certain laws and regulations change the economic incentives of
private actors—for instance, by inducingmonetary stability or encouraging employment
of low-wage workers—with knock-on effects for inequality. M & K argue that these
market conditioning effects are greatest for human capital spending (HCS), which
enhances the skills and productivity of the poor, increasing the value of their labor.
Thus, M & K hypothesize that when HCS is low, the rich reap the gains from growth
and inequality rises, but when it is high, growth is more efficiently distributed to the
poor and inequality declines.

7.1 Data and estimation

Data for the response come from the Standardized World Income Inequality Database
(Solt 2009). M & K’s main analysis is based on gross adult-equivalent income adjusted
for household composition, which captures pre-tax and -transfer income. From this
the authors construct a market Gini index that ranges over 0-100, where larger values
indicate a less equal distribution of wealth. For the covariates, M & K use economic
growth in real per capita gross domestic product (GDP), measured in thousands of US
dollars adjusted for purchasing power parity, and a fifteen-year average of aggregate
HCS as a percentage of GDP, both from the Penn World Tables (Heston, Summers,
and Aten 2001). Due to data constraints, the sample is restricted to 19 Latin American
and Caribbean countries over the period 1980-2000.

Maintaining notation consistent with the general model in Equation 3 in the main
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text, the authors’ preferred specification is the ECM

∆yt = γ0 + γ1yt−1 + θ0∆xt + θ2∆zt + θ3zt−1 + θ4∆xtzt−1 + εt,

where y is market Gini, x is GDP, z is HCS, and ε is the error term. Note that this
model restricts θ1 = θ5 = θ6 = θ7 = 0, or equivalently, it translates to an ADL where
β1 = −β0, β4 = β5 = 0, and β7 = −β6. Using the approach developed above, I solve
for the LRE of a shock to GDP, which yields −θ4∆zt+1

−γ1
(or β7∆zt

1−α1
). Thus, the authors’

specification translates into a dynamic system in which both GDP and human capital
spending must be simultaneously shocked for there to be any conditional relationship
over the infinitely long run. This description of the dynamic system contrasts with
their theoretical discussion, which predicts that “the level of investment in human
capital will condition the effect of economic growth, or change in GDP” (Morgan and
Kelly 2013, 679, italics in original). Moreover, this specification implies that if such
simultaneous shocks do not occur, then the long-run effect of growth on regime change
will be zero. These unintuitive implications of the M & K specification follow directly
from the parameter restrictions imposed.

I replicate the M & K model before estimating the general model (Equation 3 in
the main text). To ensure comparability, I include the control variables from M & K’s
favored specification in both.1 I also use the authors’ data, which centers all variables
before estimation, and follow them in clustering standard errors by country.

M & K conduct extensive pretesting of their data, using a mix of unit root and
cointegration tests. I extend this pretesting using the same mix of formal tests and
visual diagnostics discussed in the paper. Again pretesting is complicated by the panel
structure, but the evidence indicates that the interaction is a unit root process—in line
with both intuition andother analyses ofGDPand spending (see, e.g., Box-Steffensmeier
et al. 2014). Thus, it is both integrated and—by Proposition 2—cointegrated with the
other variables, which I confirm using the Engle-Granger and Johansen cointegration
tests. The evidence indicates that the ECM is an appropriate model for these data.

1. These include both lags and differences of legislative partisan balance, inflation, unemployment,
and foreign direct investment.
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Figure 9: Short- and long-run relationships between growth and inequality,
conditional on human capital spending. Lines represent predicted
instantaneous effects (left) and total effects (right) on market Gini of mean
growth in per capita GDP, holding growth in HCS at its mean value,
while varying HCS across its observed range. 95% confidence intervals
constructed from quantiles of 5,000 samples from NMV

(
θ̂,C(θ̂)

)
are

shaded in gray.

7.2 Results

Results for both models are presented in Table 2. Column 2 reproduces the authors’
headline findings and column 3 reports estimates for the general model. Most notable
among these estimates is that the main finding in M & K disappears in the full model:
there appears to be no conditional relationship between growth and HCS on inequality.
This result suggests that their model ignores the complex “memory” of the interaction
term, inducing bias. Once other cross-time interactions are modeled, only HCS
continues to exert a statistically significant effect.

Figure 9 visualizes this result. The first panel plots instantaneous effects of economic
growth equal to the sample mean (approximately $63 per capita after the authors’
centering). Varying the level of HCS across its observed range while holding change in
HCS at its mean, we see that growth never has an effect distinguishable from zero. The
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Table 2: Replication of Morgan and Kelly (2013): comparing the restricted
and general models

M & K model General model

Market Ginit−1 −0.07∗ −0.08∗

(0.02) (0.02)
∆GDPt −0.04 −0.19

(0.15) (0.26)
GDPt−1 −0.03

(0.04)
∆HCSt 0.74 2.68∗

(1.28) (1.90)
HCSt−1 −0.16∗ −0.19∗

(0.06) (0.06)
∆GDPt × HCSt−1 −0.24∗ −0.06

(0.11) (0.12)
GDPt−1 ×∆HCSt −0.73

(0.56)
∆GDPt ×∆HCSt 2.39

(2.14)
GDPt−1 × HCSt−1 0.03

(0.04)

Observations 197 197
R2 0.25 0.28
RMSE 1.01 1.01
∗p < .05. The dependent variable is ∆Market Gini. Control variables
are not reported and standard errors are clustered by country. RMSE is
calculated from out-of-sample predictions using 5-fold cross-validation.

second panel plots LREs for the same scenarios; total effects are also indistinguishable
from zero. Together, these results suggest that growth does not have an effect on
inequality in either the short or long run, irrespective of the level of human capital
spending.

Other quantities tell a similar story. Figure 10 plots cumulative effects over time,
with both the level of and change in HCS fixed at their mean values. At no point in
the 20 years following economic growth is there a discernible effect. Moreover, since
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Figure 10: Dynamic relationship between growth and inequality,
conditional on human capital spending. The line represents estimates of
cumulative change in market Gini over time as the result of mean growth
in per capita GDP, holding growth in (and level of) HCS at its mean value.
95% confidence intervals constructed from quantiles of 5,000 samples from
NMV

(
θ̂,C(θ̂)

)
are shaded in gray.

cumulative effects overlap across the entire window, none of the period-specific effects
(not plotted) can be distinguished from zero. In short, we cannot be sure of any effect
within or across any temporal windows.

Together these findings significantly revise the conclusions in Morgan and Kelly
(2013): there is little evidence to support the market-conditioning hypothesis. Yet
they also suggest a more subtle relationship between investment in human capital and
inequality. While total effects for the mean change in HCS are negative and significant
in poor countries, predicted instantaneous effects are positive. Thus, although greater
social spending is associated with less inequality in the long run, it actually induces
greater inequality in the short run. These results suggest that increased HCS comes at
a cost which, at least at first, falls on the poorest. Scholars may need to revisit theories
of the relationship between redistributive programs and inequality, paying greater

33



attention to the incidence of increased social spending. Whether these patterns are
echoed in other contexts remains to be seen, but either way, inequality in Latin America
and the Caribbean appears to be a function of simple redistribution, and not growth
as mediated by market conditioning institutions.
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8 Replication of Jennings and John (2009)

What is the relationship between public opinion and government attention to various
policy priorities? Jennings and John (2009, “J & J”) study the effect of shifts in public
opinion on mentions of policy topics in the Queen’s Speech, a formal statement of
the legislative agenda in the United Kingdom (UK). They provide extensive evidence
that the variables exist in a dynamic equilibrium. J & J then ask (in their Table 4) if
the effect of public attention to macroeconomic issues on Queen’s Speech mentions
of economic policy (which I will refer to as simply QS) is mediated by real indicators
such as inflation and unemployment.

8.1 Data and estimation

Data for the dependent variable come from the UK Policy Agendas Project, which
codes the number of mentions of major policy issue areas at the quasi-sentence level
for every Speech from the Throne over the period 1911-2012. These data are expressed
as an absolute count rather than a percentage of mentions, and so are unbounded
(upward). For the purposes of their analysis of the conditional relationship with real
economic indicators, J & J focus on the issue area relating to macroeconomics (which
they refer to as QS1).

The covariate of interest is the proportion of citizens who believe an economic issue
is the most important problem (MIP) facing the UK. The data come from two sources:
the King and Wybrow (2001) collection of surveys covering 1937-2000 and the Gallup
(2001) original index of surveys over 1959-2001. J & J merge and standardize these data
into a single series. To examine economic conditions, J & J study the “misery index,” a
simple amalgamation of the inflation and unemployment rates (source not specified).

Maintaining notation consistent with the general model (Equation 3 in the main
text), the authors’ specification with an interaction between MIP and misery is the
ECM

∆yt = γ0 + γ1yt−1 + θ6∆xt∆zt + θ7xt−1zt−1 + εt,

where y is QS, x is MIP, z is misery, and ε is error. Note that this model restricts
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θ0 = θ1 = θ2 = θ3 = θ4 = θ5 = 0, or equivalently, it translates to an ADL
where β0 = β1 = β2 = β3 = 0 and β4 = −β5 = −β6. Here the effect of these
constraints is to restrict the instantaneous effect of a shock to MIP on QS to θ6∆zt,
while the LRE reduces to θ7zt+θ6∆zt−θ6∆zt+1

−γ1
. Together, these quantities suggest that

public attentiveness to economic issues affects the legislative agenda exclusively through
real economic conditions: none of the terms in either quantity is independent of levels
of (or change in) the misery index. This implication of the model jars with their
theoretical argument, which posits both a direct effect of public opinion on Queen’s
Speech policy mentions, separate from the interactive effect.

As above, I first replicate the authors’ model before estimating the general model.
I include J & J’s only control variable, an indicator for which party is in government.
One observation drops out of both models due to missingness, leaving a time series of
just 41 observations.

J & J present a number of tests of residuals for all of the estimated ECMs. I build on
this by pretesting each variable for unit roots and visually inspecting ACF and PACF
plots. The evidence indicates that each series is integrated. I then examine residuals
from the full model, as well as conduct Johansen and Engle-Granger two-step tests to
confirm cointegration. While these data are not in a panel, making pretesting slightly
more straightforward, the time series is relatively short, diminishing the power of such
tests. Again, there is some mixed evidence, but on balance, it points toward the ECM
being an appropriate model for these data.

8.2 Results

Table 3 presents the results for the J & J model in column 2 and the general model
in column 3. Notably, all significant coefficients disappear (except for the control
variable for partisanship, which is omitted in the Table). There appears to be neither
direct nor conditional relationships between public sentiment, economic conditions,
and legislative attention. These null results are illustrated in Figure 11. At no level of
economic misery does an average shift in public attention yield any effect on legislative
attention to economic issues.
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Table 3: Replication of Jennings and John (2009): comparing the restricted
and general models

J & J model General model

QSt−1 −1.00∗ −0.93∗

(0.17) (0.21)
∆MIPt 3.21

(14.76)
MIPt−1 1.51

(7.78)
∆Miseryt −0.38

(0.83)
Miseryt−1 0.09

(0.38)
∆MIPt × Miseryt−1 0.12

(0.96)
MIPt−1 ×∆Miseryt 1.04

(1.31)
∆MIPt ×∆Miseryt 0.44∗ 1.14

(0.15) (1.66)
MIPt−1 × Miseryt−1 0.38∗ 0.23

(0.10) (0.60)

Observations 41 41
R2 0.49 0.51
RMSE 2.67 3.44
∗p < .05. The dependent variable is ∆QS. Control variables are not
reported. RMSE is calculated from out-of-sample predictions using 5-fold
cross-validation.

Given the Monte Carlo results above, it seems likely that the estimates from J &
J’s model suffer from some bias arising from mis-specification. Yet the small sample
size, combined with the number of parameters in the general model, suggest that
overfitting is a real risk for these data. This interpretation is substantiated by the higher
out-of-sample predictive RMSE for the general model. In short, both models likely
suffer from bias of some sort. The most reasonable conclusion appears to be that there
is simply not enough information in the data to reliably estimate this interaction.
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Figure 11: Short- and long-run relationships between public sentiment and
policy salience, conditional on the misery index. Lines represent predicted
instantaneous effects (left) and total effects (right) on mentions in Queen’s
Speeches (QS) as the result of an average increase in public issue salience,
holding change in the misery index at its mean value, while varying misery
across its observed range. 95% confidence intervals constructed from
quantiles of 5,000 samples from NMV

(
θ̂,C(θ̂)

)
are shaded in gray.
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9 Pretesting data

In this section I provide a sample of the pretesting exercises described in the text. In
the Blaydes and Kayser (2011) and Morgan and Kelly (2013) applications, the data are
organized into panels, and so I present just a small subset of results run separately on
each time series, separated by unit (i.e., country). Similarly, I present just a few ACF
and PACF plots, among the approximately 1,000 generated in analyzing these data.
The replication archive contains code to reproduce all visuals and tests of interest. See
Box-Steffensmeier et al. (2014) for a thorough guide on interpreting the output of these
tests.
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9.1 Blaydes and Kayser (2011)

Table 4: Univariate ADF tests, Blaydes and Kayser (2011) replication

Variable Mean p-value % tests where
null rejected

Calories 0.56 0.04
∆Calories 0.34 0.26
GDP 0.63 0.04
∆GDP 0.33 0.16
Regime type 0.42 0.00
∆Regime type 0.51 0.00
GDP × Regime type 0.71 0.00
∆ (GDP × Regime type) 0.28 0.57

Table 5: Tests for cointegration, Blaydes and Kayser (2011) replication

Test Test stat. p-value

Ljung-Box 100.86 0.00
ADF −17.39 0.01
KPSS 0.00 0.10
Engle-Granger −11.07 0.00

Table 6: Johansen test for cointegration, Blaydes and Kayser (2011)
replication

λTRACE

Null hypothesis Alt. hypothesis Test value 95% crit. value 90% crit. value

r = 0 r > 0 574.11 53.12 49.65
r ≤ 1 r > 1 372.96 34.91 32.00
r ≤ 2 r > 2 211.60 19.96 17.85
r ≤ 3 r > 3 87.84 9.24 7.52
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Figure 12: Sample ACF plot from the B & K application. Here the series in
question is the interaction of GDP and regime type in Bulgaria.
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Figure 13: Sample PACF plot from the B & K application. Here the series in
question is caloric consumption in South Korea.
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9.2 Morgan and Kelly (2013)

Table 7: Univariate unit root tests of the interaction term, Morgan and
Kelly (2013) replication

Variable Mean p-value % tests where
null rejected

ADF test 0.55 0.04
Ljung-Box test 0.00 1.00
KPSS test 0.03 0.79
ADF test, first difference 0.34 0.21
Ljung-Box test, first difference 0.26 0.38
KPSS test, first difference 0.07 0.33

Table 8: Tests for cointegration, Morgan and Kelly (2013) replication

Test Test stat. p-value

Ljung-Box 27.04 0.13
ADF −6.23 0.01
KPSS 0.09 0.10
Engle-Granger −4.98 0.00
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Table 9: Johansen test for cointegration, Morgan and Kelly (2013)
replication

λTRACE

Null hypothesis Alt. hypothesis Test value 95% crit. value 90% crit. value

r = 0 r > 0 321.07 202.92 196.37
r ≤ 1 r > 1 237.02 165.58 159.48
r ≤ 2 r > 2 173.34 131.70 126.58
r ≤ 3 r > 3 130.05 102.14 97.18
r ≤ 4 r > 4 90.93 76.07 71.86
r ≤ 5 r > 5 61.22 53.12 49.65
r ≤ 6 r > 6 37.84 34.91 32.00
r ≤ 7 r > 7 20.65 19.96 17.85
r ≤ 8 r > 8 6.71 9.24 7.52
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Figure 14: Sample ACF plot from the M & K application. Here the series in
question is the interaction of growth and HCS in Argentina.
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Figure 15: Sample PACF plot from the M & K application. Here the series
in question is the interaction of growth and HCS in Guatemala.
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9.3 Jennings and John (2009)

Table 10: p-values for univariate unit root tests by variable, Jennings and
John (2009) replication

ADF test Ljung-Box test KPSS test

QS 0.42 0.00 0.10
MIP 0.98 0.00 0.05
Misery 0.94 0.00 0.04
MIP × Misery 0.96 0.00 0.05
∆QS 0.03 0.07 0.10
∆MIP 0.01 0.34 0.04
∆Misery 0.01 0.93 0.10
∆ MIP × Misery 0.01 0.68 0.10

Table 11: Tests for cointegration, Jennings and John (2009) replication

Test Test stat. p-value

Ljung-Box 37.52 0.01
ADF −3.91 0.02
KPSS 0.31 0.10
Engle-Granger −4.30 0.00

Table 12: Johansen test for cointegration, Jennings and John (2009)
replication

λTRACE

Null hypothesis Alt. hypothesis Test value 95% crit. value 90% crit. value

r = 0 r > 0 47.07 53.12 49.65
r ≤ 1 r > 1 21.83 34.91 32.00
r ≤ 2 r > 2 8.00 19.96 17.85
r ≤ 3 r > 3 0.39 9.24 7.52
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Figure 16: Sample ACF plot from the J & J application. Here the series in
question is the number of economic policy mentions in the Queen’s Speech.
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Figure 17: Sample PACF plot from the J & J application. Here the series in
question is the misery index.
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