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Abstract

Many political science theories include variables that interact over time. In recent
years, scholars have turned to autoregressive distributed lag and error correction
models to test these theories. However, adding multiplicative interactions to
these workhorse models creates difficulties with (1) knowing when OLS estimates
are consistent, (2) writing models without implicit parameter restrictions, and
(3) interpreting results. This paper provides theoretical and practical guidance to
address these problems. First, I define the conditions under which scholars can
ensure consistent estimates. Second, I introduce a general model that imposes no
constraints on how conditional relationships unfold over time. Third, I develop
a flexible approach for interpreting such models. I demonstrate the advantages
of this framework with simulation evidence and an empirical application on the
relationship among democracy, growth, and inequality.
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Political scientists are increasingly developing theories in which variables interact
over time. With an abundance of large panel datasets to test such theories, many
scholars are turning to dynamic models—which allow the effect of a covariate on the
response to change over time—because they yield estimates of long-run effects. Over
the past decade, scholars have extended such specifications to include multiplicative
interaction terms, wherein the effect of one covariate depends on another. For example,
Nooruddin and Simmons (2006) find that International Monetary Fund programs
reduce social spending most sharply in democracies, while Kono (2008) considers
the effect of democratization on trade liberalization, conditional on the wealth of the
trading partners. Similar applications have contributed to a variety of literatures across
the discipline.1

These models are often intuitive representations of complex systems of variables.
Yet even for workhorse specifications such as autoregressive distributed lag and error
correction models (ADLs and ECMs, respectively), there is little guidance on how
best to model these interactions. As a result, scholars’ findings are vulnerable to three
problems:

1. Estimation. A large literature describes how scholars can ensure that ADLs and
ECMs are appropriate for their data through extensive “pretesting,” particularly
by examining stationarity and cointegration (e.g., Philips 2018). However, it is
unclear what tests an interaction term must satisfy, under what circumstances,
and so scholars may not be able to guarantee that ordinary least-squares (OLS)
will produce consistent estimates.

1 . Other examples include Adams, Ezrow, and Wlezien (2016), Aklin and Urpelainen (2013),
Alexiadou (2015), Andersen and Ross (2014), Arnold and Carnes (2012), Blaydes and Kayser (2011),
Carlin, Love, and Martínez-Gallardo (2015), Caughey and Warshaw (2018), Chang (2008), Cheon and
Urpelainen (2015), Copelovitch, Gandrud, and Hallerberg (2018), Cronert (2018), Dorsch and Maarek
(forthcoming), Enns et al. (2014), Escribà-Folch (2012), Hobolt and Klemmensen (2008), Jennings and
John (2009), Jensen and Mortensen (2014), Kayser (2009), Kellam and Stein (2015), Keller and Kelly
(2015), Kono and Montinola (2013, 2015), Kono, Montinola, and Verbon (2015), Lipsmeyer and Zhu
(2011), Meyer and Biegert (2019), Miller (2015), Morgan and Kelly (2013), Sorens (2011), Ramirez (2013),
Swank (2006), Tenorio (2014), Valdini and Lewis-Beck (2018), Werner and Coleman (2015), and Wright
(2015). See also dynsim, a package for R and Stata that provides a user-friendly resource for studying
dynamic models with interactions (Gandrud, Williams, and Whitten 2016).
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2. Specification. Typically, each variable of interest in an ADL or ECM suffers
from some amount of autocorrelation: its present value is a function of its past
values. Choosing which lagged values to include in the model generates different
statements about how the researcher believes covariates affect the response over
time (Box-Steffensmeier et al. 2014). However, it is unclear what lags of an
interaction represent, since either component variable may be lagged, or both.
This complication may lead to specifications that imply dynamic effects that
differ from what the author intends.

3. Interpretation. ADLs and ECMs include lags and differences that together allow
scholars to interpret their estimates. However, interactions complicate the
computation of these quantities, including both short- and long-run effects.
Scholars may be unaware of how to derive quantities of interest for their models,
potentially leading to incorrect inferences.

This paper aims to help scholars avoid these problems, providing theoretical and
practical guidance for studying conditional relationships in dynamic models.2 I begin
by defining the conditions under which OLS produces consistent estimates: even if two
covariates are stationary, their interaction may not be, and so must be explicitly tested
for stationarity. However, if a model includes cointegrated variables, the same model
with an added interaction is always cointegrated. Scholars can therefore ensure that
OLS is an appropriate estimator simply by extending standard diagnostic procedures.

I then demonstrate how to specify and interpret a generalmodel with an interaction.
Absent extremely strong a priori beliefs about the data-generating process (DGP),
scholars should proceed from a specification that allows covariates to interact freely
across time. I demonstrate that such a model includes all possible cross-period
interactions; two variables, each with p lags, generates (p + 1)2 interaction terms
that capture a single conditional relationship.

Next I provide a unified approach to calculating quantities of interest. Thequantities
most commonly encountered in the literature—including short- and long-run effects,

2 . I use “conditional relationship” and “interaction” interchangeably throughout the rest of the paper
to refer to a multiplicative interaction.

3



as well as various lag lengths—emerge as special cases of more general inferential tools.
I also show how various parameter restrictions can then be imposed on the general
model, and how such restrictions have drastic, often unintuitive, consequences for
inferences about the dynamic system.

I then turn to Monte Carlo simulation to examine two important questions about
the tradeoffs of this approach, relative to standard practice. First, scholars may be
concerned that estimating a model with an interaction, and especially a general model
with (p + 1)2 interaction terms, will induce bias: adding parameters may drag the
estimated error correction rate (ECR) downward, and can lead to overfitting when
time series are short (Enns, Masaki, and Kelly 2014; Keele, Linn, and Webb 2016).
Second, we do not know whether these risks outweigh the potential for bias that arises
from invalid restrictions. Despite these risks, I find that the approach introduced
here produces more reliable inferences: while there is some evidence of overfitting,
this risk is relatively minimal compared to the cost of an invalid restriction on the
model. My results suggest that when two variables do not interact over time, a general
model is hardly worse than a restricted specification. But when they do, a general
model recovers the true parameter values while a restricted specification can produce
seriously biased estimates.

Finally, I illustrate how these findings contribute to more robust inferences with an
empirical application.3 Blaydes and Kayser (2011) present evidence that democracies
redistribute the gains from economic growth to the poor more than do autocracies or
hybrid regimes, as commonly assumed in formal theories of regime transition (e.g.,
Acemoğlu and Robinson 2006). I replicate and extend this study using the approach
developed here. I find that the authors’ conclusions suffer from biased estimates:
regime type has no discernible role in mediating the effects of growth. This evidence
suggests that the link between regime type and inequality is weaker than is assumed in
many political economy theories.

3 . The Appendix also includes replications of Morgan and Kelly (2013) and Jennings and John (2009),
with similar results.
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1 Ensuring consistent estimates

There are a great many ways of modeling dynamic dependence among variables. Due
to space constraints, I only study multiplicative interactions in ADLs and ECMs, since
they are the most common conditional relationships in the most common time series
models in political science (Box-Steffensmeier et al. 2014).4 Throughout the paper, I
develop my argument with the ADL because it facilitates transparency, but my results
also hold for the ECM because the two are simple linear reparameterizations of one
another (Davidson and MacKinnon 1993; De Boef and Keele 2008).5

The ADL can be written in its general form,

yt = α0 +

p∑
f=1

αfyt−f +

q∑
g=1

r∑
h=0

βg,hxg,t−h + εt. (1)

This specification is ADL(p,q;r), with p lags of yt, r lags of xg,t, and q covariates. The
standard method of deciding on p and r is the Box-Jenkins methodology, an inductive
modeling technique by which researchers account for temporal dependency within
each variable and between variables in the dynamic system (Box and Jenkins 1970;
Box-Steffensmeier et al. 2014). The goal is to ensure that εt is “white noise,” with
E(εt,xg,t−h) = 0 ∀ t, g, h.

If this condition holds, OLS produces consistent estimates in two cases. The first
case requires that all variables in the model are stationary.6 Intuitively, we want to

4 . This scope condition rules out a number of alternative approaches. Most notably, many scholars
have made use of models that directly estimate time-varying relationships, such as in a Kalman filter or
Dynamic Conditional Correlations (DCC) framework (Beck 1989; Lebo and Box-Steffensmeier 2008).
While such approaches are suitable for many applications, they are somewhat rare in political science,
and so I leave discussion of their relative merits for studying conditional relationships to future research.
For a monograph-length treatment of time-varying approaches, see Petris, Petrone, and Campagnoli
(2009).

5 . In the Appendix, I provide derivations for the inferential framework I introduce in Section 3,
as well as derivations for this same framework represented as an ECM. Additionally, in the empirical
application below, I work within the error-correction framework preferred by Blaydes and Kayser (2011),
but provide the same findings from ADL estimates in the replication archive.

6 . Throughout this paper I refer only to covariance (or weak) stationarity. See the Appendix for
formal definitions and analysis for AR(1) and AR(p) cases. Note that nonstationarity occurs when any
(not necessarily all) of the requirements for stationarity are violated.
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make general inferences about the relationship among these variables, but all of our
data are sampled from a specific time window. In order for these inferences to be
valid, the data must be representative of each process beyond the limits of the sample.
Stationarity is sufficient to guarantee that this is the case, since it requires a variable to
have constant mean, variance, and auto-covariance over time.7

If this condition does not hold, then OLS estimates will still be consistent so
long as the dynamic system is cointegrated (Engle and Granger 1987; Granger 1986).
Cointegration occurs when the combination of nonstationary variables produces a
stationary variable—for instance, in Equation 1, when the xs and y generate a stationary
ε.8

Ensuring that a model with a conditional relationship satisfies these requirements
is not trivial. It seems intuitive that the “memory” of xz would directly follow the
properties of x and z. Yet this relationship does not always hold, and the standard
practice of diagnosing the time-series properties of all lower-order terms cannot
guarantee consistent OLS estimates. On the other hand, it is unclear what properties
of the interaction need to be tested, and how to do so.

To alleviate these problems, I provide theoretical results establishing when OLS
estimates are consistent for a model with an interaction and how to test for those
conditions.9 I begin with the first case, in which all variables are stationary. By
definition, this case requires that interaction terms are also themselves stationary.
Proposition 1 specifies where this holds.

Proposition 1. Assume x and z are covariance-stationary autoregressive stochastic
series. A series xz composed of their multiplicative interaction is itself stationary
if and only if C[x̂, ẑ] = C[x̃, z̃] ∀ x̂ and x̃ ∈ {xt, xt+`, xtxt+`}, ẑ and z̃ ∈
{zt, zt+`, ztzt+`}, where t, ` ∈ Z≥0, and x̂ (ẑ) and x̃ (z̃) differ only in t.

7 . Constant auto-covariance is when the covariance between any two points in time is equal,
depending only on the magnitude of the time lag ` between them, and not the particular periods
for which it is computed.

8 . All ADLs and ECMs must satisfy an additional requirement: equation balance. Recent studies
have debated how best to ensure equation balance (Enns et al. 2016; Grant and Lebo 2016; Keele, Linn,
and Webb 2016). Due to space constraints, I leave the role of equation balance in ADLs and ECMs with
interactions for future research.

9 . Proofs are provided in the Appendix.
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Intuitively, Proposition 1 says that even if two covariates are not functions of time,
the manner in which they interact may be. This would violate stationarity, in which
case OLS may not produce consistent estimates. To ensure that stationarity holds, all
covariances between the interacted variables must be independent of time.

Practically, Proposition 1 suggests that scholars always need to explicitly test
interaction terms for stationarity. This result can bemademore intuitive by considering
the only case in which stationarity is guaranteed to hold: when the two variables are
stochastically independent.

Corollary 1. Assume x and z are covariance-stationary autoregressive stochastic
series. If x and z are stochastically independent, a series xz composed of their
multiplicative interaction is itself covariance-stationary.

Scholars modeling conditional relationships are doing so precisely because they believe
that the two variables have a dependent relationship; if they are thought to be truly
independent, then there should be no point in studying their interaction. Corollary 1
should therefore never hold in practice, and scholars cannot assume that the dependence
itself is not a function of time. Only by pretesting interaction terms directly can we be
sure that they are stationary.

An example helps illustrate how this problem might arise in practice. Suppose two
variables are known to be stationary, but their correlation is a function of time, as in a
DynamicConditional Correlations (DCC) framework. Such relationships are common,
for instance, with variables such as economic growth and presidential approval (Lebo
and Box-Steffensmeier 2008). Although each variable would pass stationarity tests
individually, their interaction may be nonstationary, and OLS estimates for a model
that includes this interaction may be inconsistent. This scenario is a straightforward
example of the spurious regression problem, awell-understood andwidely documented
phenomenon (Yule 1926; Grant and Lebo 2016).

On one hand, the result in Proposition 1 adds to the already-substantial burden on
researchers to pretest their data. On the other hand, however, pretesting each variable
for stationarity is standard practice in time series modeling. There are a number of tests
that have been developed and implemented across statistical software for this purpose
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(for a recent review, see Box-Steffensmeier et al. 2014).10 These same tests can be used
for interaction terms. Scholars should take extra caution when estimating an ADL
or ECM specification with a conditional relationship, but the diagnostic procedure
remains the same.

Results are more encouraging for the second case, in which the variables are
cointegrated.

Proposition 2. If a cointegrating vector exists for a dynamic system composed of a
response y and two covariates x and z, then a cointegrating vector also exists
for a system including the multiplicative interaction xz.

This Proposition states that if the variables in the model are cointegrated, then adding
an interaction term makes no further demands of the data. OLS estimates will still be
consistent. Moreover, this condition is only sufficient, not necessary: it is possible that
the dynamic system becomes cointegrated when an interaction is included. Scholars
should therefore explicitly test models with a conditional relationship for cointegration.
As Enns, Masaki, and Kelly (2014) argue, such tests should be conducted for all ADLs
and ECMs, and a number of diagnostics already exist.11 Thus, adding a conditional
relationship imposes no new hardships on the researcher. Together, Propositions 1 and
2 establish that ADLs and ECMs are appropriate models of conditional relationships
in dynamic systems, so long as scholars extend the standard diagnostic procedures to
include interaction terms.

These results speak only to consistency, not the other desirable properties, of
OLS estimates. Yet as Enns, Masaki, and Kelly (2014) note, increasing the number
of covariates exacerbates bias for the parameter relating to the lagged response, the
error-correction rate (ECR). Since the ECR is present in all calculations of dynamic
effects, adding interactions may threaten inferences about long-term relationships
among variables. Further, there is much less information in time series data than
sample sizes suggest, making it likely that scholars who add extra covariates are simply

10 . Grant and Lebo (2016) demonstrate the utility of fractional integration (FI) methods for data that
may be neither stationary nor integrated. I leave the question of interactions in FI models for future
research.

11 . In particular, see the Engle and Granger (1987) and Johansen (1988) tests.
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modeling noise. Results from such specifications will be unstable (Keele, Linn, and
Webb 2016). ECR bias and overfitting are important problems that scholars need to
grapple with as they study dynamic models, and there is no clear consensus on how
to avoid them, other than to keep models simple. I take up these concerns in the
simulation analysis below.

2 Specifying conditional relationships

Despite a large literature on the properties of ADLs and ECMs, scarce attention is
paid to specifying relationships of interest. This lacuna is unfortunate, as even small
variations among relatively simple models can imply very different dynamics. In
practice, scholars are often unable to ensure that the relationships implied in their
statistical models match those of their theory, nor can they ensure that they are using
appropriate formulas for drawing inferences from their models. These problems may
generate incorrect or incomplete interpretations.

The simplest way to prevent these issues from arising is to estimate a general model
that allows a covariate interaction to unfold freely across time. The most general ADL
that captures this relationship between two variables, each autoregressive of order 1, or
AR(1), is given by

yt = α0 + α1yt−1 + β0xt + β1xt−1 + β2zt + β3zt−1+

β4xtzt + β5xt−1zt + β6xtzt−1 + β7xt−1zt−1 + εt. (2)

This model translates into an equivalent ECM:

∆yt = γ0 + γ1yt−1 + θ0∆xt + θ1xt−1 + θ2∆zt + θ3zt−1+

θ4∆xtzt−1 + θ5xt−1∆zt + θ6∆xt∆zt + θ7xt−1zt−1 + εt. (3)

Since x and z are AR(1), both models include two periods for each variable. Specifying
a conditional relationship therefore requires 2 × 2 interaction terms in addition to
the lower-order variables. More generally, interacting two AR(p) processes generates
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(p+ 1)2 new parameters, which allows the covariates to interact across any points in
time.12 These terms all appear in calculating quantities of interest; eliding any implies
a restriction on the dynamic system.

This specification is a reasonable starting point for most applications. For one,
the cost of invalid parameter restrictions is enormous: biased estimates and incorrect
inferences (De Boef and Keele 2008). Erroneously constraining any of the β or θ terms
in the general model to zero breaks the link between different periods of the same
variable. Failing to account for the “memory” of each process in this way induces bias
for not only the covariate directly constrained, but also among any interacted variables
and lower-order terms. For instance, setting β4 = 0 when it is non-zero in the true
DGP biases estimates of all xz terms, and through the conditional relationship, all x
and z terms (that is, it biases all β terms in Equation 2). The Monte Carlo exercise
below underscores the magnitude of these problems: in some cases, invalid restrictions
can produce essentially random estimates.

This general model is also attractive because it privileges information in the data
over broad theoretical intuition. Even the most precise theories are generally silent
on exactly when covariates interact, so a conservative approach is to allow for all
possibilities. Moreover, where theory does provide such strong guidance on the timing
of the interaction, these hypotheses can be empirically tested by estimating the general
model. Rather than impose restrictions based on a priori beliefs, this approach allows
scholars to treat parameter estimates as evidence of how the dynamic system behaves.

A final advantage of this model is it allows scholars to parse different components
of a single conditional relationship. The interaction xz can vary because of a shift in x

alone, z alone, or both. By estimating all cross-period interactions, scholars can study
the effect of each change on the dependent variable separately. All of these features
contribute to a richer set of inferences.

12 . This result generalizes to cases where their lags differ, for which an interaction generates (p1 +
1)(p2 + 1) terms.
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3 Interpreting dynamic models

Scholars studying dynamic models are typically interested in change in the response y
as a function of change in (or “shock” to) a variable x. These quantities of interest fall
into three categories: period-specific effects, cumulative effects, and threshold effects.13

The first of these quantities are period-specific effects, defined as the change in y at
any time as a result of a shock to x at time t. In other words, they answer: “what will
happen to the response at some future date if a covariate shock occurs today?” For any
period t+ j, where t and j are integers, this quantity can be calculated by specifying
the model for yt+j and differentiating with respect to xt. From Equation 2, note that

yt = α0 + α1yt−1 + . . . ,

yt+1 = α0 + α1yt + . . . ,

...

yt+j−1 = α0 + α1yt+j−2 + . . . ,

yt+j = α0 + α1yt+j−1 + . . . ,

so that each expression can be substituted for the next period’s lagged y. Thus, we can
start in period t+ j and recursively substitute previous periods of y until the right side
of Equation 2 appears. Differentiating with respect to xt therefore yields the general
expression for period-specific effects:

∂yt+j

∂xt
=


0 for j ∈ Z<0,

β0 + β4zt + β6zt−1 for j = 0,

αj
1 (β0 + β4zt + β6zt−1) + αj−1

1 (β1 + β5zt+1 + β7zt) for j ∈ Z>0.

(4)

This is an intuitive result: the effect of the shock is transmitted through the
coefficient on each xt term, decaying at a rate determined by the memory of y—the

13 . I present results for a system in which all variables are AR(1), each quantity easily extends to
AR(p) processes. And although the results are expressed in ADL parameters, the equivalent quantities
for the ECM are provided in the Appendix.
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error correction rate, α1. Since x is itself autoregressive, the shock also decays through
its own lagged values, weighted by exactly α1 less. All of these parameters are directly
estimated, so any period-specific effect is straightforward to calculate from the model
output.

Scholars typically restrict attention to the case where j = 0, which De Boef and
Keele (2008) refer to as the “short-run effect.” Yet this quantity—better understood
as the instantaneous effect of x on y—is only one among many period-specific effects
that may be useful for studying a dynamic system. For example, Casillas, Enns, and
Wohlfarth (2011) examine the effect of public opinion on Supreme Court decisions.
Computing period-specific effects from their estimates reveals that the instantaneous
effect at time t is 1.59, the effect in period t+1 is -0.42, in period t+2 it is -0.17, and so on.
Rather than monotonically increasing over time, the effect of public opinion on judicial
decisions is immediately large but diminishes significantly. Studying period-specific
effects can uncover nuanced relationships, improving our understanding of dynamic
systems.

The second quantity of interest, often the motivation for studying such models,
are cumulative effects. These effects, which provide information about relationships
over time, can be calculated by summing period-specific effects: for any time window
[t+ h, t+ k], the total change in y as the result of a shock to x is

k∑
j=h

∂yt+j

∂xt

≡ ∂yt+h

∂xt

+
∂yt+h+1

∂xt

+ · · ·+ ∂yt+k

∂xt

,

where h and k are non-negative integers and h < k. Note that each derivative is with
respect to xt; this sum is agnostic about variation in x following an initial shock.

This expression can be solved by substituting from Equation 4 and simplifying the
resulting geometric series. Just as the instantaneous effect of x on y is slightly different
from all other period-specific effects, as the shock to x has not yet worked its way
through the system of variables, so too is t = 0 a special case for cumulative effects.
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For h > 0, the expression for the cumulative effect is given by

k∑
j=h

∂yt+j

∂xt
=

(β0 + β4zt + β6zt−1)
(
αh
1 − αk+1

1

)
+ (β1 + β5zt+1 + β7zt)

(
αh−1
1 − αk

1

)
1− α1

, (5)

but for h = 0, it is simply

k∑
j=0

∂yt+j

∂xt
=

(β0 + β4zt + β6zt−1)
(
1− αk+1

1

)
+ (β1 + β5zt+1 + β7zt)

(
1− αk

1

)
1− α1

. (6)

As with period-specific effects, there is one special case of a cumulative effect that
receives the majority of scholarly attention: the total change in y resulting from a
change in x. This quantity is known as the long-run effect (LRE) or long-run multiplier
(LRM), and can be found by setting h = 0 and allowing k to approach infinity:

∞∑
j=0

∂yt+j

∂xt

=
β0 + β1 + β4zt + β5zt+1 + β6zt−1 + β7zt

1− α1

. (7)

This derivation demonstrates that the LRE is more precisely the total cumulative effect,
since it maximizes the window over which change in y is summed. By no means is
the LRE the only quantity available to scholars for describing long-run relationships.
There are many time intervals, short and long, that can be constructed to study the
behavior of the dynamic system.

Finite-period cumulative effects are useful for answering many questions scholars
care about which the LRE cannot. Most notable are questions about fixed time periods
such as a presidential term. Using the LRE to describe such relationships is unreliable
because the difference between the cumulative effect from zero to k and from zero
to infinity is often non-trivial.14 It is also increasing in α1, so the LRE is less useful
for making inferences about finite periods where y is more strongly autoregressive.
In other words, the longer it takes for effects to accumulate or dissipate over time,
the worse the end result describes what’s going on in the interim. Even very large

14 . This difference can be found by subtracting Equation 6 from Equation 7, and equals
αk

1 (α1[β0+β4zt+β6zt−1]+β1+β5zt+1+β7zt)
1−α1

.
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infinite-period relationships are not necessarily good approximations of finite-period
relationships.

Further, finite-period cumulative effects are arguablymore interesting and substant-
ively important than the LRE. For instance, the question “What is the effect of an
economic shock on public opinion over the length of a presidential term?” cannot be
meaningfully answered with the LRE. Even if it is possible to calculate how economic
downturn affects presidential popularity from now until forever, the many elections
in between may make this exercise more of a curiosity than an empirically relevant
prediction, particularly where data constraints bind. Examining cumulative effects
over various time windows can ameliorate the problem of extrapolating from short
time series, and help scholars make more precise statements about the substantive
significance of their findings.

The last quantity of interest that can be recovered from Equation 2 are threshold
effects, defined as the number of periods following a shock to x required for the total
change in y to reach some theoretically-relevant value λ. These are closely related to
the lag lengths discussed in De Boef and Keele (2008), which define λ as a proportion
(δ) of the LRE. Thus threshold effects may answer “How many years would it take for
democratization to raise per capita income by $100?” while lag lengths may answer
“How many years after democratization does 80% of total change in income accrue?”

Threshold effects and lag lengths are calculated by setting Equation 6 equal to
some λ and solving for the period k. How to interpret them depends on whether the
cumulative effect of x on y is monotonically increasing over time. If it is, then only
thresholds |λ| < |LRE| produce sensible answers, since a threshold bigger than the
total effect will never be reached. If it is not, then we choose a threshold |LRE| < |λ|
and solve for the period k during which the cumulative effect drops below λ in absolute
value. Since thresholds are difficult to compute in closed analytic form, we can simply
calculate cumulative effects over increasing k and visually inspect the results to find the
period where the predicted values cross λ. Evaluating cumulative effects over a variety
of periods is an important part of interpreting such models in general, so thresholds
can be studied with trivial added effort.

Scholars commonly discuss these effects only in the context of median and mean
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lag lengths, which describe the period at which half (δ = .5) and all (δ = 1) of the
LRE has accumulated, respectively.15 However, thresholds of interest need not be set
to one of only two values, but rather can be used to examine any quantile of the LRE.
Nor must threshold effects be expressed as a proportion of the LRE at all. Absolute
levels of change in y may be of greater interest, especially for policy applications. As
with the other quantities described above, a variety of threshold effects can be used to
convey information about the specific dynamic system under examination.

Whether they are interested in period-specific, cumulative, and threshold effects,
scholars may wish to compare results from the general model with those from a
“restricted” specification, in which one or more of the (p+ 1)2 interaction terms are
excluded. While such comparisons are useful in many contexts, scholars may not be
aware of the drastic consequences these parameter restrictions pose for calculating
the quantities discussed above (by implicitly setting β or θ terms to zero). In general,
quantities derived from one model do not match those from another model, even if
only a single term differs between them.

Kono and Montinola (2013) provide an example. The authors investigate the effect
of official development assistance (ODA) on military spending, conditional on regime
type. Ignoring control variables, their specification is the ECM

∆yt = γ0 + γ1yt−1 + θ0∆xt + θ1xt−1 + θ2∆zt + θ3zt−1+

θ4∆xtzt−1 + θ7xt−1zt−1 + εt,

where y is military expenditure as a proportion of gross national income (GNI), x
is ODA as a proportion of GNI, and z is regime type (variously measured). This
specification restricts θ5 = θ6 = 0, implying that there is no interaction that involves
change in regime type, consistent with the authors’ theoretical expectations. Yet

15 . De Boef and Keele (2008, 192) argue that scholars should always report these “forgotten quantities.”
Yet the lag length for δ = 1 is typically either nonsensical or uninteresting. If the cumulative effect of x
on y is monotonic, then δ = 1 is undefined, since the LRE is always greater (in absolute value) than
any finite-period cumulative effect to some decimal place. If it is non-monotonic, then δ = 1 simply
yields t = 0, as in the Casillas, Enns, and Wohlfarth (2011) example above. The inferential value of this
quantity is therefore limited.
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deriving the LRE for this model yields
θ1 + θ7zt − θ4∆zt

−γ1
, indicating that the effect of

a change in ODA is conditional on change in, not just level of, democracy.16 Setting
aside regime change could therefore lead to incomplete or incorrect conclusions about
the dynamic system. The only way to protect inferences from such threats is to derive
quantities of interest for each specific model.

Period-specific, cumulative, and threshold effects can all be reportedwith statements
of uncertainty. Perhaps the most easily implemented method of calculating uncertainty
is parametric bootstrapping, which requires fitting amodel and then sampling from the
distribution of the estimated parameters.17 This approach offers significant advantages
over the standard practice for estimating uncertainty, the “delta method,” which is not
easily extended to complex models nor to all of these quantities of interest. In practice,
this often leads to interpreting point estimates in the absence of uncertainty bounds,18

or only interpreting instantaneous effects and the LRE. Parametric bootstrapping
resolves this problem. By giving uncertainty estimates for all of the quantities we want
to study, parametric bootstrapping allows scholars to make much richer inferences
about dynamic systems.

4 Simulation evidence

Although the general model introduced above has a number of attractive features,
it does raise the question of whether these (p + 1)2 interaction parameters induce
ECR bias and overfitting. If the benefits of fitting a general model are outweighed by
these problems, then scholars may wish to study less complex models with implicit
parameter restrictions instead. I use Monte Carlo simulation to answer this question.

16 . See the Appendix for the LRE of an unrestricted ECM.
17 . See the Appendix for a more detailed discussion of this procedure.
18 . See the interpretation of lag lengths in De Boef and Keele (2008).
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I first simulate data from four DGPs:

yt = ρyyt−1 + ηy,t, (8)

yt = α0 + α1yt−1 + β0xt + β1xt−1 + β2zt + β3zt−1 + εt, (9)

yt = α0 + α1yt−1 + β0xt + β1xt−1 + β2zt + β3zt−1 + β4xtzt + εt, (10)

yt = α0 + α1yt−1 + β0xt + β1xt−1 + β2zt + β3zt−1+

β4xtzt + β5xt−1zt + β6xtzt−1 + β7xt−1zt−1 + εt, (11)

where xt = ρxxt−1 + ηx,t and zt = ρzzt−1 + ηz,t. For simplicity, I refer to the DGPs
in Equations 8-11 as the “spurious,” “no interaction,” “restricted,” and “full interaction”
DGPs, respectively. I hold theα andβ terms fixed across all simulations. For each of the
DGPs, I examine 34 = 81 cases, varying the time series length n ∈ {50, 100, 500} and
the autoregressive parameters ρx, ρz, ρy ∈ {0.1, 0.5, 0.9}. For each of the 324 (4×81)

experimental conditions, I create 500 datasets, with each variable’s starting value and all
errors (ε, ηx, ηz, ηy) drawn from N (0, 1), before estimating the models in Equations
9-11 and storing the results.

Turning first to the question of ECR bias, Figure 1 presents clear evidence that the
general model does not produce worse estimates of α1 than does a simpler model. The
top panel plots estimates from the model without any interaction terms (in triangles),
the restricted model with just xtzt estimated (squares), and the general model (circles),
for each of the fourDGPs. Each point represents themean estimate across 500 replicates
under the same experimental condition, with dashed lines for the true values (each
ρy in the “spurious” DGP, and α1 = 0.5 for the others). The general model provides
estimates at least as close to the true value as those of a simpler model across all DGPs,
and performs far better when the DGP includes a complex conditional relationship.
This performance is reflected in Table 1, which presents absolute ECR bias (|α̂1 − α1|
calculated for each replicate), averaged across all conditions under each DGP. Overall,
the general model produces the lowest absolute bias.

The bottom panel of Figure 1 plots coverage probabilities for estimates of α1—the
proportion of the 500 replicates under each condition for which the 95% confidence
interval (constructed via parametric bootstrap) for α̂1 contains the true value. Again,
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Figure 1: Monte Carlo simulation results for the error-correction rate, α1.
Triangles represent estimates from themodel without an interaction, squares
are from a restricted model, and circles are from the general model. Mean
estimates are plotted against the true values (dashed lines) in the top panel.
The bottompanel plots the proportion of 500 replicates under each condition
for which 95% confidence intervals contain the true value.
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Table 1: Average absolute bias, α̂1

DGP

“Spurious” No int. Restricted Full

No int. model 0.28 0.06 0.10 0.14
Restricted model 0.28 0.06 0.05 0.16
General model 0.28 0.06 0.05 0.05

the evidence suggests that the general model recovers better estimates of the ECR, with
higher coverage probabilities across the board than those of simpler specifications.
Across all conditions, the mean coverage rate for the general model is 93%, very close
to the 95% rate predicted by theory and much better than the 79% and 81% rates for
the no interaction and restricted models, respectively. Even when we ignore the full
interaction DGP—the most favorable case for the general model—the coverage rate
(93%) remains as accurate as that of the restricted model (93%) and higher than the
no interaction model (87%). Together, these data suggest that across a broad range of
experimental conditions, estimating the general model does not exacerbate ECR bias.

Turning now to overfitting: if it is a problem, we should see (1) worse out-of-sample
predictive power for the general model, relative to more parsimonious specifications,
and (2) higherMonteCarlo variance (i.e., unstable coefficient estimates) across replicates
under the same experimental condition.

Figure 2 plots the mean RMSE for out-of-sample predictions generated through
5-fold cross-validation.19 With short time series and no interaction in the DGP, the
general model produces RMSEs about 5-15% larger than those of simpler specifications.
However, where there is an interactive process in the DGP, simpler specifications
produce RMSEs approximately 25-75% larger than those of the general model—and
this effect does not diminish as sample size increases. As a result, the grand mean
RMSE for the general model is 1.07, lower than that of the no interaction (1.23) and
restricted (1.11) models.

To compare the stability of estimates across models, Table 2 reports the variance

19 . To ease computational constraints, I take a random 20% sample from each set of replicates.
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Figure 2: Monte Carlo simulation results for RMSE from 5-fold
cross-validation. Triangles represent RMSE from the model without an
interaction, squares are from a restricted model, and circles are from the
general model. The top panel is for a time series of length T = 50, the
middle is T = 100, and the bottom is T = 500. Each point represents
the mean RMSE from a 20% random sample of each set of 500 replications
under each experimental condition.
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Table 2: Mean Monte Carlo variance across all simulations

Mean Monte Carlo variance

α̂0 α̂1 β̂0 β̂1 β̂2 β̂3 β̂4

No int. model 0.04 0.01 0.07 0.05 0.04 0.03 NA
Restricted model 0.03 0.01 0.02 0.04 0.02 0.02 0.01
General model 0.02 0.01 0.02 0.02 0.02 0.02 0.02

for each set of 500 replicates, averaged across all experimental conditions. The general
model has the smallest variance for all parameters except the coefficient on xtzt, β̂4.
This result is consistent with slight overfitting, but with a difference of 0.01, appears to
be only a minor concern: the average 95% quantiles of β̂4 for each set of replicates has a
width of 0.45 for the general model, compared to 0.38 for the simple interaction model.
Together, the RMSE and variance evidence suggests that overfitting is a relatively minor
concern for the general model.

Last is the question of tradeoffs: what are the potential costs of estimating a
restrictedmodel? Figures 1 and 2 demonstrate that invalid restrictions on an interactive
process (including ignoring it altogether) generate substantial ECR bias, poor coverage
rates, and poor predictions. To highlight just one result, inferences about the conditional
relationship suffer drastically from invalid restrictions: Figure 3 plots estimates for
the coefficient on xtzt for the restricted and full models when the DGP includes a
complex interaction. Mis-specification produces severe bias, with many 95% quantiles
completely missing the true value, and highly unstable mean estimates.

Taken together, these results indicate that the cost of estimating a general model
are slight—in contrast to the problems that arise from invalid restrictions. These
results should give scholars pause, as political scientists almost always study restricted
models without comparing them against a more general specification.20 My findings
indicate that this current standard operating procedure likely produces seriously biased
estimates and unreliable inferences.

20 . The only exceptions of which I am aware are Copelovitch, Gandrud, andHallerberg (2018), Cronert
(2018), and Meyer and Biegert (2019).
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Figure 3: The consequences of invalid restrictions. Monte Carlo simulation
results for β4 when the DGP includes a complex conditional relationship.
Points represent mean estimates from 500 replicates of each experimental
condition, with lines for 95% quantiles.

5 Application: democracy, growth, and inequality

In this section I demonstrate how the modeling and inferential framework developed
above can improve our understanding of important dynamic relationships.21 Blaydes
and Kayser (2011, “B & K”) investigate a central problem in political economy: whether
regime type conditions pro-poor growth in developing countries. Many formal models
of regime transition rely on the assumption that democracies redistribute better than
autocracies (Acemoğlu and Robinson 2006; Boix 2003), yet the evidence for this
assumption is mixed (Houle 2009).

B & K make two innovations in addressing this question. First, they theorize that
clientelism may be driving inequality reduction in democracies, generating a new
empirical implication: if the gains from growth are shared through non-programmatic

21 . This application uses a panel, which is less than ideal for illustration purposes. However, all of the
political science applications of dynamic models with interactions—including all those in footnote 1
—use either panel data or a very short time series, which poses equally serious challenges for inference.
In the Appendix, I conduct a similar replication exercise for two further studies, Morgan and Kelly
(2013) and Jennings and John (2009), the latter of which does not use a panel.
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redistribution, then scholars should expect inequality reduction primarily in “hybrid”
(or semi-democratic) regimes, where provision of clientelist goods is most common.
Second, B & K introduce average daily caloric consumption as a proxy for inequality.
Biological limits on the number of calories an individual can consume mean that the
rich are not able to capture economic growth as it is transmitted through the production
of basic foodstuffs, unlike increases in the value of capital or physical assets. Moreover,
since the middle and upper classes consume near-ideal calories, any increase in the
national average is likely to be driven by gains among the poor. This interpretation
of consumption habits is substantiated by comparing calories with inequality figures
generated elsewhere (Deininger and Squire 1996). Thus B & K hypothesize that the
effect of growth on calories consumed is larger in hybrid regimes and democracies
than in autocracies.

Data on caloric consumption are gathered annually by the Food and Agriculture
Organization, covering nearly every country in the world over the period 1961-2003.
The figures are calculated by taking the initial stock of food, adding what was produced
or imported, and subtracting what was exported, estimated to have been wasted, or
left in the national stock at end of year. The result provides an estimate of annual
consumption, which is then normalized by population. For the independent variables,
B & K bin country-years by Polity IV regime type (Marshall, Jaggers, and Gurr
2011), creating three categories: autocracies (≤ −7), hybrid regimes (−6 to 6), and
democracies (≥ 7). Growth is calculated by first-differencing gross domestic product
(GDP) per capita, which is expressed in hundreds of constant 2000 US dollars. As this
literature is concerned primarily with developing countries, Blaydes and Kayser (2011)
drop country-years with a GDP per capita of $10,000 or higher. I follow their coding
decisions to ensure comparability.22

I first replicate B & K’s preferred model, given by

∆yt = γ0 + γ1yt−1 + θ0∆xt + θ1xt−1 + θ3zt−1 + θ4∆xtzt−1 + θ8w+ εt, (12)

22 . B & K omit five observations with outlier values for growth, which I also drop. 69 further
observations drop out due to missingness; to facilitate model comparison, I use the remaining sample
to estimate all specifications. I also follow the authors in providing heteroskedastic-robust standard
errors without clustering.
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where y is average per capita daily caloric consumption, x is GDP per capita, z is
a vector of regime type indicators, w is a vector of country fixed effects,23 and ε is
idiosyncratic error. Since countries rarely change regime types, B & K do not include
multiple periods of z. As a result, only one period of regime type is interacted with
growth, forcing θ2 = θ5 = θ6 = θ7 = 0. In addition to this restricted specification, I
also estimate the general model in Equation 3 but with the country dummies retained.

Before estimation, I pretest the data to ensure that the ECM is appropriate. I
examine the order of integration for each series, as well as the interaction between
growth and regime type, using ADF, KPSS, and Ljung-Box tests, and visually inspect
Autocorrelation Function (ACF) and partial ACF (PACF) plots. These diagnostics are
complicated by the structure of the data (an unbalanced panel with short time series),
but the preponderance of evidence indicates that the interaction is a unit root process.
Thus, the interaction is integrated, and—by Proposition 2—cointegrated with the other
variables, which I confirm using the Engle-Granger and Johansen cointegration tests.
As a whole, these results suggest that the ECM and ADL are appropriate models for
these data, and OLS estimates will be consistent.24

Results from these models are presented in Table 3. Column 2 replicates the
headline results fromBlaydes andKayser (2011) and column 3 gives the estimates for the
general model.25 The results appear generally consistent across models, with only the
coefficient on economic growth changing significance. Yet they produce very different
predicted effects. B &K report that GDP growth of $100 increases caloric consumption
for all countries, with the effect significantly larger in hybrid regimes and democracies.
In contrast, Figure 4 plots instantaneous effects for the general model, holding each
country’s regime type constant; here we cannot distinguish instantaneous effects across
regime types, despite the large and significant coefficients on the interaction terms. All
that can be said is that there is some evidence that growth is associated with greater

23 . Adding fixed effects to a model that includes the lagged dependent variable likely induces Nickell
(1981) bias. I include them here to maintain comparability across studies, since B & K use them to
account for cross-sectional heterogeneity. Note, however, that my results are robust to estimating the
general model without country fixed effects.
24 . See the Appendix for full details of all diagnostics.
25 . Estimates for the B & K model reported here differ from the published results because of the

slightly smaller sample, but nothing changes in substantive or statistical significance.
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Table 3: Replication of Blaydes and Kayser (2011): comparing the restricted
and general models

B & K model General model

Caloriest−1 −0.08∗ −0.08∗

(0.01) (0.01)
∆GDPt 3.51∗ 0.26

(1.43) (3.28)
GDPt−1 0.31 0.49

(0.30) (0.43)
∆Regime typet −6.30

(3.27)
Hybridt−1 12.95∗ 18.45∗

(3.88) (4.84)
Democracyt−1 9.67 11.08

(5.29) (7.30)
∆GDPt × Hybridt−1 9.96∗ 11.84∗

(3.15) (3.16)
∆GDPt × Democracyt−1 10.50∗ 10.54∗

(2.50) (2.51)
GDPt−1 ×∆Regime typet 0.13

(0.17)
∆GDPt ×∆Regime typet 2.94

(2.84)
GDPt−1 × Hybridt−1 −0.63∗

(0.29)
GDPt−1 × Democracyt−1 −0.25

(0.32)

Observations 3,264 3,264
R2 0.10 0.11
RMSE 77.83 77.32
∗p < .05. The dependent variable is ∆Calories. Both models include 112
country fixed effects, with heteroskedastic-robust standard errors. RMSE is
calculated from out-of-sample predictions using 5-fold cross-validation.

caloric consumption among the poor in hybrid regimes and democracies.
More differences between the models’ predictions emerge in the dynamic effects.

The top and bottom panels of Figure 5 plot period-specific and cumulative effects,
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respectively. Examining the period-specific effects, we have essentially no information
except that, following an initial shock, the effect of growth on caloric consumption is
negative in hybrid regimes. However, the trend is very similar in democracies, so it is
difficult to draw sharp distinctions among regime types. Turning now to cumulative
effects, we see that the instantaneous and long-run effects overlap for each regime. None
of the LREs—6 calories in autocracies, -2 in hybrid regimes, and 3 in democracies—are
statistically distinguishable from zero. These results contrast sharply with those of B
& K, who report LREs of 13, 170, and 187, respectively. Additionally, the LREs overlap
across all regimes, meaning that it is not possible to infer whether the effect of growth
on caloric consumption differs across regime types.

Threshold effects provide slightly more leverage. Setting λ = 0 and visually
inspecting the bottom panel of Figure 5, it is clear that the lower bound of the estimated
cumulative effect crosses zero eight years after the initial shock in hybrid regimes, but
only after 12 years in democracies. Thus, the positive association between growth and
calories lasts about 60% longer in democracies than it does in hybrid regimes. This may

●

●
●

Figure 4: Short-run relationships between growth and inequality by regime
type. Each point represents the predicted instantaneous effect on average
daily per capita calories consumed of a $100 increase in per capita GDP,
conditional on regime type, from the full model. 95% confidence intervals
constructed from quantiles of 5,000 samples from NMV

(
θ̂,C(θ̂)

)
are

plotted as lines.
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be suggestive of the clientelism mechanism B & K introduce, since we would expect
the effect of non-programmatic redistribution to fade over time. Yet it is difficult to
read too much into this result, given the null findings within and across periods and
regime types.

Finally, unlike B & K’s model, the general model predicts effect sizes that begin
and remain small. Mean daily consumption across the sample is 2,405 calories, so
$100 in GDP growth generates only a 0.5% increase in caloric intake. For a country to

●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

Figure 5: Dynamic relationships between growth and inequality by regime
type. The top (bottom) panel plots period-specific (cumulative) effects in
average daily per capita calories consumed as the result of $100 growth in
per capita GDP, conditional on regime type, from the full model. LREs (total
effects) are plotted at∞. Lines (ribbons) represent 95% confidence intervals
constructed from quantiles of 5,000 samples from NMV

(
θ̂,C(θ̂)

)
.
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move from the third decile to the cross-national mean in calories consumed, it would
require growth of approximately $1,700 per capita—more than doubling the mean
income level. No matter the regime type, it appears that growth engenders negligible
redistribution.

Taken as a whole, these findings suggest that there are few cross-regime differences
in translating growth into inequality reduction. Hybrid regimes and democracies
may be marginally better than autocracies at generating immediate caloric gains for
the poor, but effect sizes are small, and grow smaller still over time. In the long run,
regime types are essentially indistinguishable in their capacity for pro-poor growth.
This interpretation contrasts with that of Blaydes and Kayser (2011), who conclude that
“growth in autocracies benefits the poor less than growth in democracies and hybrid
regimes” (902). These results suggest that theories of regime transition may need to
reconsider the assumption that democracies redistribute more than non-democracies.

6 Understanding dynamic interactions

Scholars are increasingly generating theories that rely on conditional relationships.
In the effort to “take time seriously” (De Boef and Keele 2008), they have built vast
datasets and estimated ADLs and ECMs that capture dynamic political phenomena.
However, our understanding of these models has failed to keep pace with the richness
of our theories. A number of recent studies have added interactions to ADLs and
ECMs, but have not begun the work of developing a theoretical and practical basis for
such extensions.

This paper provides first steps in both. I have outlined the conditions necessary
for OLS to guarantee consistent estimates, a method for writing general models
with interactions, a unified approach for drawing inferences from these models, and
simulation evidence that shows the advantages of this approach over current scholarly
practice. Revisiting Blaydes and Kayser (2011), I find that the authors’ inferences
about growth and inequality suffer from biased estimates produced by models with
invalid parameter restrictions. A more general framework suggests that democratic
institutions do not promote pro-poor growth. These results are troubling for canonical
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theories in political economy that assume important roles for political institutions in
mediating the distributional effects of economic growth.

My findings demonstrate that scholars should not unthinkingly add interaction
terms to their dynamic models. Here I echo the chorus of findings that applied work
typically suffers from too little attention to data constraints, diagnostic tests, and
specification decisions.26 Like Grant and Lebo (2016) and Keele, Linn, and Webb
(2016), I urge scholars to rigorously test the properties of their data at each stage of
modeling and estimation.

The central contribution of this paper is to provide a toolkit for scholars to extend
dynamic models to include conditional relationships. I therefore conclude by offering
a tentative set of “best practices” for studying these models.

1. Estimation. Scholars should ensure that the ADL or ECM produces consistent
estimates. Due diligence with respect to diagnosing properties of political time
series, already a key step in studying dynamic models, is even more important
when complications such as multiplicative interactions are introduced. To this
end, scholars should extend standard pretesting and postestimation procedures
to interactions terms.

2. Specification. Once assured that their estimates are consistent, scholars should
then study a general model before exploring restricted models. Theories of how
variables interact over time are better tested empirically than imposed a priori,
since invalid parameter restrictions introduce bias and threaten inferences.

3. Interpretation. Whatever specification is chosen for interpretation, scholars
should use the general approach outlined above to derive quantities of interest for
that model. Relying on off-the-shelf equations, particularly for the LRE, can lead
to incorrect inferences. Thesewell-known formulas are special cases, appropriate
only for particular specifications. Scholars should then report those quantities
that provide the most information about how the dynamic system behaves. In

26 . For examples and discussion, see the contributions to a recent special issue of Political Analysis,
particularly Esarey (2016), Freeman (2016), Grant and Lebo (2016), Helgason (2016), and Keele, Linn,
and Webb (2016).
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some cases, this will entail reporting the LRE and mean and median lag lengths.
However, in many cases, other quantities such as finite-period cumulative effects
and absolute thresholds will be more informative. Whatever estimated effects
are discussed, they should be presented with uncertainty statements generated
through such techniques as parametric bootstrapping.

These practices will both expand the range of inferences we are able to make and
increase our confidence in them, contributing to a stronger evidential base for under-
standing how political forces interact over time.
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